Same as sensitivity_analysis()
but it takes raster object and other parameters as an input.
sa_onrasters()
is a wrapper aroundsean()
function. Takes raster object and other parameters as an input.msean_onrast()
same assa_onrasters()
. Use this for side effects + results. Produces and plots the maps for the outcomes and results are returned as an object. It produces and plots the maps for the outcomes and results are returned as an object.
Arguments
- rast
Raster object which will be used in analysis.
- link_thresholds
Numeric vector. link threshold values
- hd_thresholds
Numeric vector. host density threshold values
- ...
Additional parameters to be passed to
sean()
.- global
Logical.
TRUE
if global analysis,FALSE
otherwise. Default isTRUE
- geoscale
Numeric vector. Geographical coordinates in the form of c(Xmin, Xmax, Ymin, Ymax) which EPSG:4326 in coordinate reference system. If
geoscale
is NuLL, the extent is extracted fromrast
(SpatRaster) usingterra::ext()
.- res
Numeric. Resolution of the raster. Default is
reso()
.- outdir
Character. Output directory for saving raster in TIFF format. Default is
tempdir()
.
Value
A list of calculated CCRI indices after operations.
An index is generated for each combination of paramters.
One combination is equivalent to sean()
function.
References
Yanru Xing, John F Hernandez Nopsa, Kelsey F Andersen, Jorge L Andrade-Piedra, Fenton D Beed, Guy Blomme, Mónica Carvajal-Yepes, Danny L Coyne, Wilmer J Cuellar, Gregory A Forbes, Jan F Kreuze, Jürgen Kroschel, P Lava Kumar, James P Legg, Monica Parker, Elmar Schulte-Geldermann, Kalpana Sharma, Karen A Garrett, Global Cropland .connectivity: A Risk Factor for Invasion and Saturation by Emerging Pathogens and Pests, BioScience, Volume 70, Issue 9, September 2020, Pages 744–758, doi:10.1093/biosci/biaa067
Hijmans R (2023). terra: Spatial Data Analysis. R package version 1.7-46, https://CRAN.R-project.org/package=terra
See also
Use get_rasters()
to obtain raster object.
msean_onrast()
supported_sources()
Examples
# \donttest{
rr <- get_rasters(list(monfreda = c("avocado")))
res1 <- sa_onrasters(rr[[1]],
global = FALSE,
geoscale = c(-115, -75, 5, 32),
c(0.0001, 0.00004),
c(0.0001, 0.00005),
c("sum", "mean"),
res = 12)
res2 <- sa_onrasters(rr[[1]],
global = TRUE,
link_thresholds = c(0.000001),
hd_thresholds = c(0.00015),
agg_methods = c("sum"),
res = 12)
res3 <- msean_onrast(rast = rr[[1]],
link_thresholds = c(0.000001),
hd_thresholds = c(0.00015))
# }